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ABSTRACT8

This version: May 9th 2024

Throughout the last centuries, European climate changed substantially, which affected the potential to plant and
grow crops. These changes happened not just over time but also had a spatial dimension. Yet, despite large
climatic fluctuations, quantitative historical studies typically rely on static measures for agricultural suitability due to
the non-availability of time-varying indices. Relying on recent advances in paleoclimatology, we bridge this gap by
constructing a spatio-temporal measure for agricultural suitability across Europe for a period of 500 years. Our
gridded index has a 0.5◦ resolution and is available at a yearly level. It relies on a simple surface energy and water
balance model, focusing only on so-called exogenous geographic and climatic features. Our index captures not
just long-term trends, such as the Little Ice Age, but also short-term climatic shocks. It will empower researchers
to explore the interplay between climatic fluctuations and Europe’s agricultural landscape, analyze human
responses at a local and regional scale, and foster a deeper understanding of the region’s historical dynamics.
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Background & Summary10

“To understand our world’s changing climate, it is imperative that we understand how climates of the past varied.11

Paleoclimatic data are the language we use to look into the past to understand ourselves and ultimately our future.”12

— Dowsett, 2020 [1]13

Climate change, referring to long-term shifts in temperatures and weather patterns, is one of the pressing topics of our time.14

Throughout the last years, it has received increasingly more attention, both from the public and from scientists. Climate change,15

however, is not a recent phenomenon. Advances in the field of paleoclimatology, the study of ancient climates prior to the16

widespread availability of instrumental records, allow us to increasingly understand what the Earth’s past climate was like. One17

of the main themes that emerges from these studies is that climate change not only had a temporal but also a spatial dimension.18

The link between temperature and precipitation fluctuations and agricultural productivity is widely recognized in modern19

agriculture [2]. Crops rely on suitable growing conditions, including optimal temperatures and adequate soil moisture and20

nutrients, for the successful completion of their life cycles [3]. Consequently, alterations in temperature and precipitation21

patterns directly impact the suitability of land for agricultural use [4]. Before the industrial era, when irrigation and chemical22

fertilizers were not yet prevalent, these climatic influences were even more significant. This dependency was reinforced at a23

societal level by the fact that over half of the population was directly involved in agriculture during pre-industrial times [5; 6].24

As a result, fluctuations in climate often had profound effects on both the economic system and human well-being by directly25

impacting agricultural productivity [7; 8; 9].26

These effects do not occur uniformly across space. Climate change, instead, also has the potential to change the geography27

of crop suitability [4; 10; 11; 12]. The climatic, soil and topographic requirements may vary over a wide range of different28

geographic areas and the climate experienced at any one location is unique to that point, at no other location will an identical29

climate occur1. Because climate frequently varies over very short distances, it is paramount for scholars working with30

disaggregated historical data to take spatial peculiarities into account.31

1 Historical examples of heterogeneous shifts in agricultural suitability are well documented already for the 14th century[13]. The famine period from



Yet, quantitative historical studies hitherto relied on static indices for agricultural suitability due to the non-availability of32

time-varying indices.33

In order to overcome this limitation, we combine recent advances in paleoclimatology and construct the first time-varying34

index for agricultural suitability in Europe from 1500 to 2000. We use a simple surface energy and water balance model as35

proposed by Ramankutty et al. [3]. Specifically, we rely on spatio-temporal data for temperature by Luterbacher et al. [15; 16]36

and precipitation by Pauling et al. [17]. Previous research has demonstrated that a combination of growing season length37

and moisture availability to crops effectively encapsulates pertinent characteristics to define the cold and dry boundaries of38

agricultural land [18]. The remaining components of the index emphasize the vital significance of soil potential hydrogen (pH)39

and carbon content in delineating agricultural boundaries, which are fundamental in determining nutrient availability for crops40

and maintaining soil functionality [3; 19; 20]. The temporal and spatial extent, as well as the resolution at the 0.5◦ x 0.5◦ level,41

are imposed by these paleoclimatic datasets.42

This novel index is able to capture not just long-term trends, such as the so-called Little Ice Age (LIA), but also short-term43

climatic shocks. Specifically, we illustrate that the index captures negative shocks on agriculture induced by both precipitation44

and temperature, highlighting the importance of looking at the joint role of these features and their interaction with local45

soil conditions. Looking only at raw temperature or precipitation variation in isolation in order to understand variations in46

agricultural output is not an ideal approach. For example, temperatures that are both too high and too low are detrimental to47

crops. The same holds true for precipitation as drought-like conditions are not conducive to plant growth, whereas too much48

rainfall during summer and autumn constituted the greatest hazard to crops in pre-industrial Europe [21; 22]. What is more,49

there are potential interactions as, for example, the combination of cold weather and droughts seems to have created the most50

unfavorable conditions for crop cultivation in Mediterranean Europe [23]. Their effects are thus non-linear and interact with51

each other, suggesting that some functional form is needed [24].52

Importantly, in the construction of the index, we deliberately abstain from incorporating any information on actual historical53

land use and only include features that are exogenous to human activity. This is in contrast to an interesting literature with54

a different goal which tries to estimate and reconstruct historical cropland cover [25; 26; 27; 28; 29]. Such an approach55

necessarily needs to make assumptions about the level and spatial distribution of population over time - which is something56

that is viewed as an endogenous outcome in the types of historical studies for which our index will be useful. Irrespective of57

that, population estimates before the 19th century, let alone their spatial distribution, are not well-known and often based on58

educated guesses and assumptions [30]. Furthermore, we deliberately do not aim to estimate the potential agricultural output of59

a particular piece of land, which varied across time and space based on a multitude of institutional and cultural factors. For60

example, land-tenure systems, the type of crop-rotation, the availability of new-world crops, the availability of horses as draft61

animals, episodes of war or conflict, and many others. It is thus desirable to separate out land use and potential production and62

only focus on factors that are exogenously imposed by nature. Our index, therefore, aims to define the likelihood of an area63

being suitable for cultivation, irrespective of whether it was cultivated or not. This leaves ample room for the expert researcher64

of any study using our index to determine how much of the output is actually caused by the human-environment interaction and,65

therefore, makes it easier to alleviate concerns about environmental determinism [7].66

By capturing the evolution of agricultural suitability over time and space, our dataset will empower researchers to explore67

the interplay between climatic fluctuations and Europe’s agricultural landscape, analyze human responses at a local and regional68

scale, and foster a deeper understanding of the region’s historical dynamics. It will be particularly relevant for research in69

the area of ’history of climate and society’ (HCS), where recent emphasis has been placed on the need to account for local70

and spatio-temporal heterogeneity of past climate changes [31]. In studies that just wish to account for (exogenous) changes71

in agricultural suitability at a fine-grained level, our dataset will be a useful time-varying control variable, for example, in72

regression analysis.73

Scholars across many disciplines have long traced the cascading effects of climate and geography in shaping societies74

(see Brázdil et al. [32] and Degroot et al. [33] for a comprehensive review). Climate and land suitability for agriculture have75

historically influenced crop productivity and the essential role of agriculture in providing nutrients — calories, proteins, and76

vitamins. These factors not only fueled labor but also shaped the organizational frameworks of pre-industrial societies, setting77

the stage for modern energy transitions [34]. This perspective illuminates the profound influence of land’s capacity to sustain78

crops, whether in terms of overall suitability or specific crop requirements, in elucidating persistent developmental disparities,79

such as state formation [35], distribution of economic activity [36], structural transformation [37], growth [38], as well as time80

preferences [39], cultural dynamics [40], and cooperation [41].81

Therefore, understanding changes in agricultural suitability and its implications is crucial for assessing the role of human82

activity as a driver of global environmental change [42] and potentially guiding the projection of future scenarios through the83

1315-1322 in Northern Europe was driven by diminished crop yields due to wet and cold summers. After a shift of the Atlantic westerlies, rainfall increased in
Southern Europe which led to harvest failures in the 1330ies and 1340ies without affecting the North in a similar fashion. The disappearance of viticulture,
which only happened in the North of Europe, would be another example [14]
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lens of Integrated Assessment Models (IAMs), offering crucial insights for informed decision-making and sustainable resource84

management.85

Understanding the past human-climate interrelationship is essential for decision-makers and institutions seeking to compre-86

hend a range of issues and take effective actions in the future. Climate variability over the last millennium provides crucial87

context for assessing future changes, particularly as anthropogenic effects become increasingly dominant [as argued by 43, and88

many others]. Our index will aid researchers in addressing important questions regarding the impact of changes in agricultural89

suitability induced by climate change on people’s lives and the economy in the past. This insight can inform strategies to tackle90

contemporary challenges, especially in low- and middle-income countries that are often highly vulnerable to climatic shocks.91

Several different time-varying indices of agricultural suitability, covering periods starting from the 1960s, have been92

proposed [4; 42; 44; 45]. Since all of them require a rich set of input variables with spatio-temporal variation, which is93

essentially only available since the advent of satellite data, none of these can be extended backward to cover longer periods of94

time. To overcome this, researchers working with historical data typically use either a static index [3; 39] or, e.g., choose95

one cross-section of the GAEZ index [46] to proxy for suitability in pre-industrial times. Alternatively, if researchers are96

willing to disregard geographic variability, they could just use readily available paleoclimatic time series data measured for the97

entire continent or parts of it. Relying only on variation in temperature or rainfall in isolation in order to capture agricultural98

suitability, however, is not recommended due to interactive and non-linear effects, as pointed out above. Our index is the99

first one to combine both of these worlds, offering temporal as well as geographic variation in agricultural suitability. The100

temporal and spatial coverage of our index is limited, however, we hope we were able to illustrate the immense usefulness101

of the geographical component of paleoclimatic data for social science research and spur further research in this area. Such102

advances would allow to extend our approach to areas outside of Europe and periods farther back in time.103

The most comparable paper to our work is the spatially explicit Old-World Drought Atlas (OWDA) [47], which is a104

0.5◦ gridded tree-ring based reconstruction of soil moisture spanning the entire common era. OWDA estimates a boreal105

summer self-calibrating Palmer’s Drought Severity Index (scPDSI), therefore focusing on severe drought and wetness. These106

precipitation-related events are usually the ones that trigger famine [48], and the OWDA is thus able to capture extreme outlier107

events well. Especially in the North of Europe, however, crop cultivation is often found to be much more temperature sensitive108

[22]. Droughts are also typically much more spatially restricted than temperature anomalies [49]. Our index takes this into109

account and also captures more nuanced suitability fluctuations that naturally occurred due to changes in both temperature and110

precipitation.111

The article is organized as follows: The Methods section provides an in-depth exploration of our approach, offering a112

schematic overview of the methodology in Figure 1, and detailing the various building blocks that constitute our index. In the113

Data Records section, we describe the dataset along with instructions for accessing and downloading it. Finally, we offer an114

overview of our index and conduct a technical validation with relevant benchmark indices.115

Methods116

Our agricultural suitability index follows the approach by Ramankutty et al. [3] and consists of four main building blocks: a117

measure for cumulative temperature exposure (growing degree days), a measure for soil moisture (aridity index), the carbon118

content of the soil, and its potential hydrogen value. Land suitability is then defined as the predicted value of the propensity of a119

given piece of land to be suitable for cultivation.120

The suitability of land for agriculture is influenced by natural constraints, including local climate, soil characteristics, and121

topography, which collectively determine the availability of energy, water, and nutrients necessary for crop cultivation. Changes122

in temperature and precipitation patterns directly impact the suitability of land for agricultural use [4], however, the specific123

impact of these climatic factors varies widely based on crop type, geographical location, production practices, and technological124

advancements [50].125

By choosing a simple surface energy and water balance model, we illustrate how existing spatio-temporal paleoclimatic126

data can be used to create a spatially explicit suitability index that reaches several centuries into the past. Importantly, we are127

relying on temporal variation only from rainfall and temperature, sources that are exogenous to human activity in Europe - at128

least in our historical context. Since one of the primary uses of this index is to help scholars study how climate change affected129

human behavior in the past, it would be far from ideal to incorporate human behavior itself into the index. It would, in fact,130

induce a form of circular reasoning that would make it difficult to distinguish cause from effect.131

This section describes in detail how each of these blocks were constructed and how we combine them into an index at132

a yearly level. The time frame and the spatial extent of our index were dictated by the spatio-temporal historical data on133

temperature and precipitation which are the main inputs.134

3/25



Data overview135

The starting point of our data construction is a uniform grid with dimensions of 0.5◦ x 0.5◦, bounded by the following136

geographical coordinates: 25◦W to 40◦E and 35◦N to 70◦N. The core historical climate datasets under investigation include137

temperature data [15; 16] and precipitation data [17]. These datasets provide reconstructed seasonal temperature values (in138

degrees Celsius) and precipitation values (in millimeters) for four seasons (Autumn, Winter, Spring, and Summer) at a 0.5◦ x139

0.5◦ grid resolution (approximately 55km by 55km measured at the equator). Our constructed initial grid aligns with these data140

sources.141

To construct a comprehensive crop suitability index, we have adopted the methodology introduced by Ramankutty et al. [3]142

as our foundational framework. This index integrates multiple critical factors, including growing degree days, soil moisture,143

soil pH, and carbon content, as primary determinants of soil suitability. Due to the lack of temporal data on soil parameters,144

we assume that soil pH and carbon content remain constant over time, attributing temporal variability exclusively to growing145

degree days and the soil moisture index. Numerous inputs were indispensable for the computation of various parameters,146

extending beyond just temperature and precipitation data. We incorporated additional environmental variables such as potential147

sunshine hours, average wind speed, relative humidity, and elevation. A comprehensive description of all the data utilized in148

this study is provided bellow:149

Historical temperature: In this study, we employ the European Seasonal Temperature Dataset, constructed by Luterbacher et150

al. [15; 16]. This dataset represents a high-resolution grid (0.5◦x 0.5◦) capturing seasonal temperature patterns across European151

land areas spanning from 25◦W to 40◦E and 35◦N to 70◦N from the year 1500 to 2000. The dataset draws upon various152

sources, incorporating homogenized and quality-assured instrumental data series, historical records documenting sea-ice and153

temperature indices from past centuries, and seasonally resolved proxy temperature reconstructions sourced from Greenland154

ice cores and tree rings originating from Scandinavia and Siberia [15; 16]. The dataset segments the year into four distinct155

seasons, each spanning three months: winter (December, January, and February), spring (March, April, and May), summer156

(June, July, and August), and autumn (September, October, and November). To ensure perfect alignment with the resolution157

parameters demanded by our research, we have extracted temperature data, calculating the seasonal mean value for every cell158

of our imposed grid covering Europe, specifically ranging from 25◦W to 40◦E and 35◦N to 70◦N.159

Link to data: Historical temperature.160

Historical precipitation: We exploit the historical precipitation dataset sourced from the work of Pauling et al. [17]. This161

gridded dataset (0.5◦X 0.5◦) encompasses the European landscape extending from 30◦W to 40◦E and from 30◦N to 71◦N. It162

provides a comprehensive view of precipitation patterns from the year 1500 to 1900, also incorporating the gridded reanalysis163

data spanning the years 1901 to 2000 documented by Mitchell et al. [51]. The construction of this dataset required the use of164

advanced statistical techniques, prominently employing Principal Component Regression methods. It combines an extensive165

array of data sources, including long instrumental precipitation records, precipitation indices rooted in historical documentation,166

and natural proxies such as tree rings chronologies, ice cores, corals, and speleothems, all sensitive to precipitation signals167

[17]. Similar to the historical temperature dataset, it segments the year into four distinct seasons, each spanning three months:168

winter (December, January, and February), spring (March, April, and May), summer (June, July, and August), and autumn169

(September, October, and November). To ensure perfect alignment with the resolution parameters demanded by our research,170

we have extracted precipitation data, calculating the seasonal mean value within our grid covering Europe, specifically ranging171

from 25◦W to 40◦E and 35◦N to 70◦N.172

Link to data: Historical precipitation.173

Other surface climate: The remaining surface climate data has been gathered from the CRU v.2.0 dataset [52]. This dataset is174

a reconstruction of a 10-minute latitude/longitude data set of mean monthly surface climate over the global land area, excluding175

Antarctica. In this study, we used four climate elements from this dataset: relative humidity, sunshine duration, wind speed, and176

elevation. These elements were interpolated from the data set of station means for the period 1961 to 1990. To ensure perfect177

alignment with the resolution parameters demanded by our research, we have extracted the different elements, calculating their178

mean values within our study grid covering Europe, specifically ranging from 25◦W to 40◦E and 35◦N to 70◦N.179

Link to data: CRU v.2.0 (last updated July 2002).180

Soil characteristics: Soil data parameters have been sourced from the Harmonized World Soil Database (HWSD) [53], a181

repository renowned for its comprehensive representation of soil characteristics. The re-gridded HWSD dataset is presented182

in the form of files at a resolution of 0.05◦, encompassing a diverse array of soil attributes. These attributes encapsulate183

information derived from actual soil profiles, reflecting varying stages of pedogenic evolution, land utilization, historical land184

use, and past disturbances. Within the HWSD, soil properties are accessible for both surface soil horizons (ranging from 0185

to 30 cm) and deeper soil profiles (spanning depths of 30 to 100 cm) [53]. For our specific investigation, we have carefully186

chosen two pivotal components essential for assessing crop suitability: topsoil carbon content (T_C, in kg C m-2) and topsoil187

4/25

https://crudata.uea.ac.uk/cru/projects/soap/data/recon/#paul05
https://crudata.uea.ac.uk/cru/projects/soap/data/recon/#paul05
https://crudata.uea.ac.uk/cru/data/hrg/tmc/


pH (T_PH_H20, in H20, -log(H+)). To ensure perfect alignment with the resolution parameters demanded by our research,188

we have extracted the pertinent properties, calculating their mean values within our grid of 0.5◦ resolution covering Europe,189

specifically ranging from 25◦W to 40◦E and 35◦N to 70◦N.190

Link to data: HWSD (revision date: September 15, 2014).191

Actual agricultural suitability: Our model is calibrated to the most recent and precise measure of suitability sourced from the192

FAO GAEZ v4 data portal. To align with the scope of our study, we constructed the actual measure of agricultural suitability by193

considering an average of four main types of crops historically prevalent in pre-industrial Europe: wheat, oat, rye, and barley.194

These crops were assessed over the time period of 1971-2000 under rainfed conditions and low input levels without considering195

CO2 fertilization effects. The resulting index has been normalized to a scale from 0 to 1 and then extracted to a novel grid with196

a resolution of 0.5◦ covering the European landscape, specifically ranging from 25◦W to 40◦E and 35◦N to 70◦N.197

Link to data: FAO GAEZ v4 Data Portal (last visited: March 2, 2024).198

Administrative units: The polygon delineating the coastlines of Europe is taken from Natural Earth. The dataset represents199

land polygons, including major islands at 1:50m covering the extent of the study: 25◦W to 40◦E and 35◦N to 70◦N.200

Link to data: Natural Earth (version 4.0.0.)201

Data manipulation: Data manipulation throughout this study has been consistently executed using one of the datasets202

delineated previously. For comprehensive insight into the variables utilized within our methodology, their respective origins,203

the manipulation processes undertaken, and the resulting outputs, please refer to Table 1.204

Building Blocks for the Suitability Index205

To construct a comprehensive crop suitability measure, in line with the approach outlined by Ramankutty et al. [3] as our206

foundational framework, we require four key components: growing degree days, soil moisture, soil pH, and carbon content,207

which collectively serve as the primary determinants of agricultural suitability. In the upcoming sections, we will provide an208

overview of the four parameters and their significance in evaluating crop development.209

Growing Degree Days (GDD)210

GDD serves as a vital metric for estimating the growth and developmental progress of plants and insects during the active211

growing season. It is commonly used in the agronomic literature as a measure for cumulative temperature exposure [54]. The212

concept is based on the notion that development occurs only when temperatures surpass a minimum developmental threshold,213

typically set at 5◦C for most European crop varieties2.214

Originally, GDD is computed by summing daily temperature values over the course of a year. However, given our dataset’s
lack of daily temperature observations, we have tailored the calculation of the GDD to align with our available seasonal data. To
achieve this, we have evenly distributed the weight of each season, consisting of approximately 91 days, to construct the GDD
measure for each year t from 1500 to 2000. The four seasons represent averages over 3 months as follows: Winter (December,
January, February), Spring (March, April, May), Summer (June, July, August), and Autumn (September, October, November).
Hence, this measure, contingent on the average seasonal temperature i in year t, is defined as follows:

GDDt =
4

∑
i=1

max(0, 91× (Ti,t − 5)) day degrees. (1)

Aridity Index (AI)215

We employ the AI as a proxy for soil moisture. The AI is a straightforward and widely accepted measure of aridity, rooted in216

the assessment of long-term climatic water deficits [55]. Beyond its role in forecasting drought and flood patterns, such indices217

are recognized for their utility in gauging moisture availability, crucial for the potential growth of reference crops and various218

vegetation types [56].219

Aridity can be expressed as a generalized function of the ratio of precipitation over potential evapotranspiration (PET , or
ET0 in our case).

AI =
P

ET0
(2)

Evapotranspiration (ET ) constitutes a pivotal phenomenon within the realm of biology, with particular significance in the220

study of crop water requirements. Over the different measures of potential water loss, reference evapotranspiration (ET0) is221

considered a more suitable indicator for estimating potential evapotranspiration compared to temperature-based metrics due to222

its utilization of an energy balance approach [57].223

2As depicted by the European Environment Agency (EEA).
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ET0 can be computed according to the Penman-Monteith equation, which calculates the rate of ET from a hypothetical224

reference crop characterized by a standard crop height of 12 cm, a consistent canopy resistance of 70 ms−1, and an albedo225

of 0.23, closely resembling the rate of ET from an extensive expanse of green grass [58; 59]. To execute the computation of226

ET0 effectively, the model needs several input parameters such as potential sunshine hours per day SD (hours), wind speed U2227

(ms−1), mean daily relative humidity RH (%), latitude L (deg), elevation A (m), minimum temperature Tmin (◦C), maximum228

temperature Tmax (◦C) and mean temperature Ta (◦C).229

To ensure uniformity and relevance, we undertook specific data transformations. Notably, we converted the potential230

sunshine dataset from CRU, originally expressed as a percentage, into potential sunshine hours by imposing a maximum of 11231

hours of daylight, using country averages from the World Meteorological Organization Standard Normals. Furthermore, we232

adjusted the wind speed data, initially measured at a height of 10 meters, to the standard measurement height of 2 meters. This233

adjustment was made using a logarithmic wind speed profile for measurements conducted above a short grassed surface [60],234

resulting in an approximate equivalence of U2 = 0.75U10. All necessary inputs are comprehensively described in Table 1.235

We provide below a step-by-step derivation of the different parameters necessary to compute ET0 following the method236

described by the FAO GAEZ framework [61].237

1) Latent heat of vaporization (λ , in MJ kg−1) represents the amount of energy required to change a unit mass of liquid
into vapor at a given temperature location (Ta).

λ = 2.501−0.002361Ta (3)

2) Atmospheric pressure (P, in kPa) is the pressure exerted by the weight of the earth’s atmosphere. Measured using238

elevation above sea level in meter (A), at higher altitudes where atmospheric pressure is lower, evaporation tends to occur more239

readily due to reduced pressure.240

P = 101.3
(

293−0.0065A
293

)5.256

(4)

3) Psychrometric constant (γ , in kPa◦ C−1) serves as a bridge between the partial pressure of water vapor in the air
and the air temperature. Given that atmospheric pressure (P) changes with altitude, the psychrometric constant (γ) also
varies accordingly. Consequently, water evaporates at higher altitudes and boils at lower temperatures due to the decrease in
atmospheric pressure depending on the latent heat of vaporization (λ ).

γ = 0.0016286
(

P
λ

)
(5)

4) Aerodynamic resistance (ra) determines the transfer of heat and water vapor from the evaporating surface into the air241

according to wind speed measurement at 2 m (U2). Assuming a constant crop height of 0.12 m and a standardized height for242

wind speed at 2 m, temperature, and humidity at 2 m, the aerodynamic resistance ra for the grass reference surface can be243

approximated as follows:244

ra =
208
U2

(6)

5) Crop canopy resistance (rc) relates to the resistance offered by the crop canopy to the transfer of water vapor from the245

leaves to the atmosphere. It represents the extent to which the crop canopy limits the evapotranspiration process. Setting the246

average daily stomata resistance of a single leaf (Rl) equal to 100, and a leaf area index of the reference crop (LAI) at 2.88 [61],247

rc can be computed according to the following equation:248

249

rc =
Rl

0.5LAI
(7)

6) Modified psychrometric constant (γ⋆, in kPa◦ C−1) can be computed using previous steps.

γ
⋆ = γ

(
1+

rc

ra

)
(8)
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7) Saturation vapor pressure (ea, in kPa) represents the maximum amount of water vapor that air can hold for given250

minimum and maximum temperatures Tmin and Tmax. At higher temperatures, the saturation vapor pressure increases because251

warmer air can hold more moisture, while at lower temperatures, the saturation vapor pressure decreases.252

eax = 0.6108exp
(

17.27Tmax

237.3+Tmax

)
(9)

ean = 0.6108exp
(

17.27Tmin

237.3+Tmin

)
(10)

ea = 0.5(eax + ean) (11)

8) Vapor pressure at dew point (ed in kPa), i.e. at the temperature at which water vapor begins to condense into water can
be computed using relative humidity (RH, in %) and saturated vapor pressure eax and ean.

ed =
RH
100

× 0.5(
1

eax
+ 1

ean

) (12)

9) Slope vapor pressure curve (ϑ , in kPa◦C−1) gives the relationship between saturation vapor pressure (eax and ean) for253

given temperatures Tmax and Tmin:254

ϑx =
4096eax

(237.3+Tmax)2 (13)

ϑn =
4096ean

(237.3+Tmin)2 (14)

ϑ = ϑx +ϑn (15)

10) Latitude (ϕ , in rad) using latitude (L) in degree.255

ϕ =
Lπ

180
(16)

11) Solar declination (δ , in rad) varies throughout the year due to the tilt of the Earth’s axis relative to its orbit around the
Sun. It can be approximated using the Spencer formula [62].

δ = 0.006918−0.339912cosτ +0.070257sinτ −0.006758cos2τ +0.000907sin2τ −0.002697cos3τ +0.00148sin3τ (17)

Where τ is called the day angle (in radian) and depends on the Day of the Year (J).

τ =
2πJ−1

365
(18)

12) Relative distance Earth to Sun (d) throughout the year, as influenced by the Earth’s elliptical orbit around the Sun and
the tilt of its axis.

d = 1+0.033cos
(

2π

365
J
)

(19)

13) Sunset hour angle (Ψ, in rad) to determine the timing of sunset using the latitude in rad (ϕ) of the location and the solar256

declination angle in rad (δ ).257

Ψ = arccos(−tanϕtanδ ) (20)
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14) Extraterrestrial radiation (Ra, in MJ m−2d−1) refers to the amount of solar radiation received at the top of the Earth’s258

atmosphere under ideal conditions, assuming there are no atmospheric factors such as clouds, haze, or air pollution to attenuate259

the solar radiation. The computation of the extraterrestrial radiation is found using the relative distance from Earth to the Sun260

(d), the sunset hour angle (Ψ, in rad), the latitude (ϕ , in rad), and the solar declination (δ , in rad) previously computed.261

Ra = 37.586d(Ψsinϕsinδ + cosϕcosδ sinΨ) (21)

15) Maximum daylight hours (DL) represents the theoretical maximum duration of daylight at a specific location for a given262

day given the sunset hour angle (Ψ).263

DL =
24
π

Ψ (22)

16) Short-wave radiation (Rs, in MJ m−2d−1) gives the solar radiation received at the Earth’s surface given sunshine hours
per day (SD), maximum daylight hours (DL) and extraterrestrial radiation (Ra).

Rs =

(
0.25+0.5

SD
DL

)
Ra (23)

17) Net incoming short-wave radiation (Rns, in MJ m−2d−1) represents the solar radiation absorbed by the Earth’s surface
depending on short-wave radiation (Rs), contributing to surface heating and various environmental processes. Assuming an
albedo coefficient (α) of 0.23 for a reference crop, the net incoming radiation is defined as follows[61].

Rns = 0.77Rs (24)

18) Net outgoing long-wave radiation (Rnl , in MJ m−2d−1) is the energy emitted by the Earth’s surface in the form of
long-wave infrared radiation, primarily due to its temperature. Given sunshine hours per day (SD), maximum daylight hours
(DL), the vapor pressure at dew point (ed), maximum and minimum temperature (Tmax and Tmin), the net outgoing long-wave
radiation is computed as follow.

Rnl = 4.903×10−9
(

0.1+0.9
SD
DL

)
(0.34−0.139

√
ed)

(273.16+Tmax)
4 +(273.16+Tmin)

4

2
(25)

19) Net radiation flux at surface (Rn, in MJ m−2d−1) gives the balance between incoming solar radiation absorbed by the
Earth’s surface (Rns) and outgoing long-wave radiation emitted by the surface (Rnl).

Rn = Rns −Rnl (26)

Wrapping up the inputs we have computed in the previous steps, we can define an aerodynamic (ETar) and radiation (ETra)
term according to the Penman-Monteith combination equation3 [63].

ETar =
γ

ϑ + γ⋆
· 900

Ta + 273
·U2 · (ea − ed) (27)

ETra =
ϑ

ϑ + γ⋆
· (Rn − G) · 1

λ
(28)

The output is a 0.5◦x 0.5◦ set of grids indicating the yearly measure of ET0 in millimeters per day from 1500 to 2000.264

20) Reference evapotranspiration (ET0, in mm per day).

ET0 = ETar +ETra (29)
3While the computation of soil heat flux (G) holds significance at the monthly level, its relevance diminishes considerably on a larger spatial scale, raising

the potential for inaccuracies in its estimation [56]. Therefore, in our study, we opt to omit the computation of the soil heat flux (G) altogether, effectively
setting it to zero (G = 0).
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Soil pH and carbon content265

In line with the methodology outlined by Ramankutty et al. [3], we designate soil pH and carbon content within the topsoil,266

where the majority of crop roots reside, as pivotal factors in determining soil suitability for agricultural purposes.267

Primarily, soil pH, a fundamental parameter, profoundly influences soil fertility and nutrient availability, thereby directly268

impacting crop productivity. Lower pH levels, indicative of soil acidity, can impede the accessibility of essential plant nutrients269

while facilitating the uptake of detrimental elements such as aluminum, manganese, and hydrogen, along with the leaching of270

vital nutrients like calcium, magnesium, sodium, and potassium [64]. Conversely, elevated soil pH, characteristic of alkaline271

soils, hampers crop growth and yield by altering nutrient availability and disrupting natural microbial communities. The272

presence of sodium bicarbonate (NaHCO3) and sodium carbonate (Na2CO3) exacerbates these challenges, inducing nutritional273

stress and iron deficiency in plants and ultimately diminishing crop yields [20].274

Secondly, soil organic carbon assumes a pivotal role in determining soil functionality and ecological services. Its presence275

significantly enhances various chemical properties of soil, including infiltration capacity, water-holding ability, and nutrient276

availability for crops [19]. Nevertheless, low levels of organic carbon may indicate nutrient deficiencies, rendering the soil277

unsuitable for cultivation. Conversely, excessively high organic matter content can exacerbate water retention, leading to278

waterlogging conditions in poorly drained soils, thereby rendering them unsuitable for optimal crop growth [3].279

To assess topsoil suitability conditions, we utilized data from the Harmonized World Soil Database [53], which provides280

measurements of pH (in H2O -log(H+)) and carbon content (in kg C m-2) at depths ranging from 0 to 30 cm.281

Computation of agricultural suitability measure282

In the following, we show how the building blocks are combined in order to obtain a yearly index.283

Model calibration284

In line with the methodology outlined by Ramankutty et al. [3], the determination of our agricultural suitability index relies on285

functions denoted as f (GDD), f (AI), f (C), and f (pH), each detailed below. These functions are established by fitting curves286

to capture the relationship between actual agricultural suitability and the four parameters: GDD, AI, C, and pH. Essentially,287

each functional form represents the probability of suitability as a function of these input parameters.288

To avoid dependence on historical endogenous cropland cover maps, we opted to construct the actual agricultural suitability289

by averaging the suitability indices of major crops historically present in the region. In pre-industrial Europe, wheat, rye, barley,290

and oat were the predominant crops, with rice, maize, and potatoes becoming significant only in later centuries in certain291

regions [34].292

To align with our most recent observations, we collected the suitability indices of wheat, rye, barley, and oat across from293

the FAO GAEZ data portal to our 0.5◦x 0.5◦grid covering the European landscape for the period 1971-2000. To simulate294

historical conditions accurately, these measures were constructed under rain-fed conditions, low input levels, and without CO2295

fertilization. Subsequently, the suitability indices of different crops were averaged and scaled over the grid to yield a normalized296

index of actual agricultural suitability ranging from 0 to 1.297

For the GDD and AI, we employed simple sigmoidal curves, terminating the curve fitting when reaching the first peak. This
approach aligns with prior research indicating that a combination of growing season length and moisture availability effectively
delineates the cold and dry boundaries of agricultural land [18]. While GDD indicates sufficient warmth for cultivation, AI
accounts for plant-available moisture. The functional forms are calibrated as follows:

f (GDD) =
1

1+ ea(b−GDD2000)
(30)

Where GDD2000 represents the average GDD measure over the period 1971-2000 to match the FAO suitability measure. The
fitting yields a = 0.0079 and b = 982.75.

f (AI) =
1

1+ ea(b−AI2000)
(31)

Where AI2000 denotes the average AI measure over the period 1971-2000 to align with the FAO suitability measure. The fitting298

gives a = 22.95 and b = 0.237.299

The choice of a double sigmoidal curve to model the relationship between carbon content (C) and agricultural suitability is
underpinned by key agricultural and environmental considerations. Soil carbon content, serving as a measure of the total organic
content within the soil, plays a pivotal role in determining nutrient availability for crop growth. A low soil carbon content
implies limited nutrient availability, thereby restricting optimal plant development and agricultural productivity. Conversely,
excessively high soil carbon content levels often indicate waterlogging, particularly prevalent in wetland areas. In such instances,
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soil drainage becomes imperative for cultivation, necessitating significant investment in land preparation [3]. Hence, the
functional form is calibrated as follows:

f (C) =
a

1+ eb(c−C)
× a

1+ ed(e−C)
(32)

The fitting gives a = 0.99, b = 1.7, c = 2.345, d =−0.458 and e = 14.347.300

The representation of soil pH (pH) involves a composite of fitted lines, each delineating distinct pH ranges and their301

respective effects on soil suitability for cultivation. Soil pH levels significantly impact soil fertility and nutrient availability, thus302

influencing agricultural productivity. Extremely low pH levels characterize overly acidic soils, while excessively high pH levels303

denote soil alkalinity, both of which are unsuitable for cultivation. As soil pH gradually increases from toxic conditions towards304

the optimal range, nutrient availability improves, consequently enhancing the probability of successful cultivation until reaching305

an optimal plateau, as depicted by the first fitted line. Soil with pH values ranging between 6.5 and 7 represents an ideal range306

for cultivation, as indicated by the second flat line, reflecting optimal soil conditions conducive to crop growth. However, as soil307

pH continues to rise beyond the optimal range, nutrient availability diminishes under alkaline conditions, leading to decreased308

suitability for cultivation, as depicted by the third fitted line [3]. The functional representation of f (pH) incorporates these309

considerations, with parameters tailored to capture the nuanced relationship between pH levels and agricultural suitability.310

Specifically, the function f (pH) is defined as follows:311

312

f (pH) = max

0,


−1.12 + 0.325pH if pH < 6.53
1 if 6.53 ≤ pH ≤ 7.09
5.194 − 0.591pH if pH > 7.09

 (33)313

314

Figure 2 gives a visual representation of the different fitting curves. It is important to note that, in contrast to the study315

by Ramankutty et al. [3], which employs a soil moisture index derived from the ratio of actual evapotranspiration (ETa) to316

potential evapotranspiration (PET ), we have opted to utilize the AI as a proxy for soil moisture. This decision allows us to317

directly incorporate precipitation as a crucial factor in assessing agricultural land suitability and overcomes the limitation on318

historical temporal data for inputs necessary to compute the rate of ETa.319

Combining the Building Blocks320

By incorporating time-varying parameters denoted as AIt and GDDt with soil suitability conditions C and pH, our agricultural
suitability metric is constructed on an annual basis, combining the four foundational components described previously:

Suitt = f (AIt) × f (GDDt) × f (C) × f (pH) (33)

As each of the different functions produces values between 0 and 1, the product of the four parameters always generates a321

value between 0 and 1 by construction. In practical terms, this computation yields a spatial grid at a resolution of 0.5◦x 0.5◦,322

defined as the yearly probability for a given piece of land to be suitable for cultivation based on four distinct climatic and soil323

factors. It deliberately does not account for the potential agricultural output of a particular piece of land, which varied across324

time and space based on a multitude of factors. For example, institutional factors such as land-tenure systems, the type of crop325

rotation, the availability of new-world crops (which only started to diffuse later), the availability of horses as draft animals, or326

agricultural technology. In short, we try to abstract from possibly everything endogenous to human activity - which, we hope,327

makes the index appealing for many research applications.328

Figure 3 presents the time series of the agricultural suitability index, averaged across Europe, accompanied by a 25-year329

moving average. The first time series underscores the notable impact of temperature and precipitation fluctuations on the330

suitability index. The moving average, on the other hand, elucidates overarching trends more distinctly. It delineates the peak331

of the Little Ice Age in the 16th and 17th centuries, succeeded by nearly a century of increase. Notably, around the time of332

the French Revolution, the index embarks on a century-long decline. From 1900 onward, a sustained ascent becomes evident,333

driven by the well-documented rise in average temperatures expounded upon in the contemporary climate change literature.334

Figure 6 and 7 visually depict the spatial variability of different climate indices and the suitability index for selected years335

marked by "extreme events". In the year 1669 AD (figure 6), Europe experienced one of the lowest mean levels of precipitation,336

totaling 622.62 millimeters for the year, whereas 1775 AD (figure 7) represented the most suitable year with a mean suitability337

index of 0.55 across Europe. Figure 4 and 5 illustrate the agricultural suitability, temperature, and precipitation time series,338

respectively, where these events are discernible4. While these snapshots represent only a few among numerous maps, the339

4In 1695 AD, the lowest temperature level over Europe was recorded with a daily mean of 5.37 ◦C. In 1702 AD, the highest level of precipitation was
observed, with an average of 808.65 millimeters over Europe. Regarding agricultural suitability, 1902 AD represented the least suitable year, with a mean
suitability index of 0.434 across the continent. Finally, 1989 AD recorded the highest temperature in Europe, with a daily mean of 8.67 ◦C
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diverse nature of these shocks underscores the significance of their spatial dimension and their interaction with other climate340

and soil variables.341

In 1669 (figure 6), temperatures in Western Europe were up to 1.20 standard deviations above their mean, while temperatures342

in the remaining part of the continent remained relatively stable. This temperature increase could be interpreted as having343

a positive impact on crop suitability, particularly evident through the GDD measure. However, Central Europe experienced344

extremely low levels of precipitation, with some regions recording deviations of up to -5 standard deviations from the usual345

levels. Two notable observations can be made regarding the change in agricultural suitability for that year. Firstly, the346

combination of relatively high temperatures and extremely low precipitation significantly reduced soil moisture available347

for plants through the AI, rendering most areas unsuitable for cultivation, with some areas deviating by up to -22 standard348

deviations from the usual values. Secondly, the increase in temperature in the arid part of the study area (Southern Europe and349

Northern Africa) was counterbalanced by higher levels of precipitation, providing sufficient moisture to compensate for the350

temperature increase and thereby enhancing the agricultural suitability of the area.351

In our second case study (Figure 7), dated back to the year 1775 AD, we observed the highest suitability index (0.55).352

While Southern Europe and Northern Africa experienced a decline in suitability due to the interplay of higher temperatures and353

reduced precipitation, Eastern Europe witnessed a notable uptick in suitability primarily attributed to temperature rise. This case354

study underscores a crucial insight: regions traditionally deemed too cold for sustained cultivation, especially those hovering355

around the 5◦C threshold conducive to crop growth, stand to gain the most from temperature increases. Such temperature shifts,356

when coupled with appropriate moisture levels and soil conditions, have the potential to metamorphose previously unsuitable357

areas into viable cultivation zones. A pertinent example is Northern Europe, where land suitability saw a remarkable rise,358

reaching values up to 4.50 standard deviations above the norm, spurred by elevated temperatures peaking at 1.80 standard359

deviations above the mean level. This illustrates how changes in temperature, particularly in regions near the colder boundary360

for cultivation, can profoundly influence crop suitability, opening new avenues for agricultural productivity in areas once361

deemed largely unsuitable.362

The importance of changes in climate conditions is also noteworthy and varies depending on soil conditions. Areas with363

different soil suitability conditions will be impacted differently by climate shocks, with areas having less suitable soil being364

more vulnerable to significant climate shocks. Conversely, areas with relatively high soil suitability, while negatively impacted365

by the shock, could potentially still sustain cultivation due to their favorable soil conditions. Thus, understanding the interplay366

between climate and soil conditions is crucial for predicting the resilience of agricultural systems to climate change.367

While it is acknowledged that more sophisticated tools for measuring crop suitability over time have been developed, particularly368

the FAO GAEZ grids available for periods from 1960 onwards [44], for periods in the 20th century, our index remains valuable369

for studies requiring consistent, uninterrupted suitability measurements spanning multiple centuries, thereby avoiding structural370

discontinuities in the dataset.371

Data Records372

The agricultural suitability index is available on figshare. The dataset provides a reconstruction of agricultural suitability for the373

European landscape ranging from 25◦W to 40◦E and 35◦N to 70◦N at a 0.5◦ x 0.5◦ resolution for the 1500 - 2000 period in374

GeoTIFF (.tif) format:375

suit.tif Geospatial raster dataset with 501 bands representing the annual average agricultural suitability index for the period376

from 1500 to 2000. The index ranges from 0 (unsuitable for cultivation) to 1 (highly suitable for cultivation).377

Technical Validation378

Validating our agricultural suitability index presents challenges due to its pioneering nature and the lack of comparable historical379

data. As the first to develop a time-varying index reaching back beyond the mid-20th century, we lack benchmarks to technically380

validate for the earlier time periods. Additionally, agricultural output data linked to specific geolocations is sparse prior to the381

20th century, further complicating validation efforts. However, we believe that technical validation only on periods in the second382

half of the 20th century is sufficient to demonstrate the robustness of our index for several reasons. First, the index is defensive383

in the sense that the time-varying component is induced only by the temperature and precipitation datasets [15; 16; 17], which384

have undergone rigorous validation themselves. Second, our simple surface energy and water balance model - as proposed by385

Ramankutty et al.[3] - relies on relatively weak assumptions and standard functional forms and thus should have almost equal386

applicability across several centuries. Additionally, the methodology remains widely embraced across many academic fields.387

We proceed to validate our index for post-World War II periods (1961-1990 and 1971-2000), the furthest extent to which388

we can compare our index with other existing agricultural suitability measures. This analysis involves comparing our index to389

the well-established FAO GAEZ product and the static Ramankutty et al. [3] index itself. First, we analyze the cross-sectional390
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correlation and see the goodness of fit. Second, we spatially compare the differences across all grid cells. Lastly, a histogram391

shows that these errors are roughly symmetrically distributed.392

To enable accurate comparison, all indices have been extracted to our 0.5◦ resolution grid covering the European landscape,393

specifically ranging from 25° W to 40° E and 35° N to 70° N. Since the FAO GAEZ suitability index uses climate data from394

1971-2000 AD and the index built by Ramankutty et al. [3] uses data from 1961-1990 AD, we average our index over these two395

time spans to facilitate temporal comparison.396

Figure 8, panel (a), illustrates a fairly strong correlation between the agricultural suitability index derived from FAO data397

and our measure of agricultural suitability with an R-squared of almost 60%. Several factors contribute to this observation.398

Primarily, our index employs a focused approach to assessing agricultural suitability, relying on four main parameters to399

delineate favorable conditions. In contrast, the FAO index integrates numerous factors, including soil quality, water supply400

systems, and crop-specific soil suitability ratings, which contributes to its higher level of detail and reliability. Given that we do401

not target to fit the FAO index ex-ante and that its functional forms are quite different, we believe the observed correlation is402

very reassuring.403

Panel (b) exhibits the correlation with the index developed by Ramankutty et al. [3]. The achieved R-squared of over 70%404

is remarkably good, and it can be seen in the scatterplot that the observations line up fairly well along the 45-degree line. Our405

index tends to identify slightly more suitable areas. This discrepancy arises due to several differences in our methodology.406

Firstly, we rely on different and more recent weather and soil data, as well as incorporating a composite index of agricultural407

suitability from FAO instead of historical cropland cover maps for parameter calibration. Consequently, these differences impact408

the definition of functional forms in our index. Secondly, the limited global coverage of our temperature and precipitation data409

over the European landscape results in geographically more constrained observations for model training thus driving some of410

the observed difference. Our index is, therefore, more optimized for the European continent, whereas Ramankutty et al. [3]411

covers the entire globe.412

Figure 9 illustrates the spatial disparities between our index and the two benchmark indices, calculated as follows:413

difference = Suiti −Xi, where Suiti represents our measure of agricultural suitability and Xi denotes either the composite414

measure of agricultural suitability defined by the FAO GAEZ (panel a) or the measure of agricultural suitability by Ramankutty415

et al. [3] (panel b) for grid i. Consequently, negative values indicate areas identified as more suitable by the other dataset, while416

positive values imply that our measure indicates grids with higher suitability conditions for cultivation.417

Looking at panel (a), we observe differences in the arid south and cold north boundaries of Europe for the FAO index,418

whereas our index slightly shows more suitable areas in southern Europe and along the East coast of the Adriatic Sea, most419

likely due to our simplified soil suitability conditions. Comparing spatial differences with Ramankutty et al. [3] (panel b), we420

still observe differences in the arid south but also note what appears to be more generally suitable areas in central Europe. As421

climate is unlikely to differ substantially enough in these areas to account for such differences, the variations likely result from422

differences in datasets on soil suitability (carbon content and soil pH), as well as induced changes in model calibration.423

As a final step, upon examination of figure 10, we observe that these differences are minor and distributed symmetrically.424

However, a slight shift towards the positive spectrum suggests that our index tends to identify higher suitability conditions425

on average in Europe for this time period, particularly when compared to the index developed by Rmankutty et al. [3]. It is426

important to emphasize that our index is not designed to compete with the precision of modern indices built by the FAO GAEZ.427

Usage Notes428

We advise researchers to first extract the rasters for the years of interest and then take zonal averages via buffers if they want to429

measure suitability for a point in space, for example, a specific city. This ensures that possible noise and measurement error in430

the location are averaged out.431

If one is interested in the average suitability for a whole area, it suffices to compute the zonal mean within the polygon, e.g.432

a country, for the given year. If the focus is instead on a longer period, we suggest first averaging the grid over these years and433

only then taking the zonal statistics.434

If researchers are interested in agricultural suitability only in the second half of the 20th century, we recommend relying on435

the much more detailed products provided by the FAO cited in this text and also used for technical validation. If, however, a436

research project covers periods before and after the turn of the 20th century, we suggest relying on our index throughout to437

ensure consistency. The year 2000 is the temporal limit imposed by the historical spatial temperature and precipitation datasets.438

Code availability439

The computation of the index has been entirely built using R version 4.3.0 (2023-04-21 ucrt) with the following device440

specifications: processor 11th Gen Intel(R) Core(TM) i7-1165G7 @ 2.80GHz 2.80 GHz, installed RAM 32.0 GB (31.7 GB441

usable) and system type 64-bit operating system, x64-based processor.442
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The code that generates our index is fully available on GitHub and is structured as follows.443

• Agricultural_Suitability.Rmd is the main replication file, setting the extent of the study, importing the444

raw data, processing the different parameters, constructing and saving the suitability index into a multi-layer raster:445

suit.tif. The file calls the following functions that have been compartmentalized for readability purposes. These446

scripts only define functions and do not need to be executed separately.447

– [fun]CRU_manipulation.R is a function that processes the raw data from the CRU [52] into a list before448

extraction.449

– [fun]temp_data_manipulation.R is a function that processes the raw temperature data [15; 16] and450

stores into a list: the mean, minimum, and maximum average temperature before extraction.451

– [fun]pre_data_manipulation.R is a function that processes the raw precipitation data [17] into a list452

before extraction.453

– [fun]evapo_grid.R is a function that computes the rate of reference evapotranspiration (ET0) using the454

Penman-Monteith equation following the FAO GAEZ method [61].455

• Technical_validation.Rmd import, compare and save the various outputs from the technical validation part.456

• Figures_tables.R generates all figures and tables shown in the manuscript.457

• Pre_raster_generation.R imports, processes, and saves the raw precipitation data [17] into multi-layer rasters458

for the Winter, Spring, Summer and Autumn season: precip_win.tif, precip_spr.tif, precip_sum.tif,459

precip_aut.tif.460

• Temp_raster_generation.R imports, processes, and saves the raw temperature data [15; 16] into multi-layer461

rasters for the Winter, Spring, Summer, and Autumn season: temp_win.tif, temp_spr.tif, temp_sum.tif,462

temp_aut.tif.463
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Figure 1. Study design; crop development requirement, inputs, parameters and result.

Note: Historical temperature are taken from [15; 16]. Historical precipitation from [17]. Windspeed, humidity, elevation and sunshine hours are taken from the
Climate Research Unit (CRU) CRU v.2.0 dataset [52]. Soil characteristics such as carbon content and soil pH are from the Harmonized World Soil Database
[53]. All the different variables have been extracted calculating the mean value for each variables within a 0.5◦x 0.5◦grid resolution covering the European
landscape, specifically ranging from 25◦W to 40◦E and 35◦N to 70◦N to ensure a uniform spatial coverage.

Table 1. Required inputs

Variable name Manipulation Measurement Source
Pot Sunshine (SD) SD = Sun

100 ×11 hours/day CRU CL v.2.0 [52]
Wind speed (U2) U2 = 0.75U10 at 2m in m/s CRU CL v.2.0 [52]
Humidity (RH) None in percent CRU CL v.2.0 [52]
Latitude (L) None in degree 0.5◦X 0.5◦grid
Elevation (A) None in m CRU CL v.2.0 [52]
Precipitation (P) P = Pwin +Pspr +Psum +Paut in mm/year [17]
Min temp (Tmin) Tmin = min(Twin,Tspr,Tsum,Taut) in ◦C (daily average) [15; 16]
Max temp (Tmax) Tmax = max(Twin,Tspr,Tsum,Taut) in ◦C (daily average) [15; 16]
Mean temp (Ta) Ta = mean(Twin,Tspr,Tsum,Taut) in ◦C (daily average) [15; 16]
Topsoil pH (pH) None in H2O -log(H+) HWSD [53]
Topsoil carbon content (C) None kg C m-2 HWSD [53]

Note: Sun represent the percent of maximum possible (percent of daylength), multiplied by the maximum hours of sunshine per day (11) using country
averages from the World Meteorological Organization Standard Normals. U10 is a measure of windspeed at 10m. All the different variables have been extracted
calculating the mean value for each variables within a 0.5◦x 0.5◦grid resolution covering the European landscape, specifically ranging from 25◦W to 40◦E and
35◦N to 70◦N to ensure a uniform spatial coverage.
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Figure 2. Model calibration

Note: The suitability index (FAO) is computed taking the average suitability of four major cultivated crops in Europe; wheat, oat, rye and barley from FAO
GAEZ v4 data portal for the period 1971 - 2000. Indices have been standardized to take value 0 - 1. Growing degree days (GDD) is computed using the
following formula: GDD = ∑

4
i=1 max(0, 91× (Ti − 5)) day degrees with temperature data from [15; 16] and has been averaged over the period 1971 - 2000.

The aridity index (AI) has been computed according to this equation: AI = P/ET0 with precipitation data from [17], temperature from [15; 16] and climate
surface from [52] with data averaged over the 1971 - 2000 period. Soil potential hydrogen, pH (in H20 -log(H+)) and carbon content, C (kg C/m2) are taken
from [53]. Each points on the x axis represent observations averaged over bins, and values associated to the y axis correspond to the best suitability value
reached by each bin. Selected points have for each calibration, except for their own: 4 < Csoil < 10, AI > 0.5, GDD > 1300, 6 < pHsoil < 8. The lines
represent the different fitting curves; f (GDD), f (AI), f (C), f (pH). A sigmoidal curve for the GDD and the AI, a double normalized sigmoidal for the soil
carbon content so that maximum is reached at 1, and a combination of fitted lines for the soil potential hydrogen following [3]. All the different variables have
been extracted calculating the mean value for each variables within a 0.5◦x 0.5◦grid resolution covering the European landscape, specifically ranging from
25◦W to 40◦E and 35◦N to 70◦N to ensure a uniform spatial coverage.
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Figure 3. Agricultural suitability time series

(a) Yearly average

(b) 25 years moving average

Note: Panel (a) and (b) show the agricultural suitability index time series for Europe using yearly observation and a 25 years moving average respectively. The
observations have been computed taking the average of a 0.5◦x 0.5◦grid resolution covering the European landscape, specifically ranging from 25◦W to 40◦E
and 35◦N to 70◦N.
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Figure 4. Temperature time series

(a) Yearly average

(b) 25 years moving average

Note: Panel (a) and (b) show the mean temperature time series for Europe using yearly observation and a 25 years moving average respectively. Data originally
from [15; 16] has been extracted over a grid of 0.5◦x 0.5◦resolution covering the European landscape, specifically ranging from 25◦W to 40◦E and 35◦N to
70◦N.
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Figure 5. Precipitation time series

(a) Yearly average

(b) 25 years moving average

Note: Panel (a) and (b) show the mean precipitation time series for Europe using yearly observation and a 25 years moving average respectively. Data originally
from [17] has been extracted over a grid of 0.5◦x 0.5◦resolution covering the European landscape, specifically ranging from 25◦W to 40◦E and 35◦N to 70◦N.
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Figure 6. Case study 1 (1669 AD)

(a) Precipitation1669 (mm/y) (b) Precipitation1669 (Z-score)

(c) Temperature1669 (◦C) (d) Tempertaure1669 (Z-score)

(e) Suit1669 (f) Suit1669 (Z-score)

Note: Left panels (a), (c), and (e) show the raw precipitation[17], temperature[15; 16] and our measure of agricultural suitability for the year 1669, where we
register one of the lowest levels of precipitation over Europe (662.62 mm over the year). Right panels (b), (d), and (f) show the z-score value of panels (a), (c)
and (d), respectively. Z-score values for each grid i have been computed using the standard formula: Z-scorex,i,t = (xi,t −µx,i)/σx,i where µxi ,i and σx,i are the
mean and standard deviation of variable x in grid i over the 1500-2000AD period respectively. xi,t is either yearly mean temperature, precipitation, or mean
agricultural suitability for grid i at time t. The different values have been computed using a grid of a 0.5◦x 0.5◦resolution covering the European landscape,
specifically ranging from 25◦W to 40◦E and 35◦N to 70◦N.
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Figure 7. Case study 2: 1775 AD

(a) Precipitation1775 (mm/y) (b) Precipitation1775 (Z-score)

(c) Temperature1775 (◦C) (d) Tempertaure1775 (Z-score)

(e) Suit1775 (f) Suit1775 (Z-score)

Note: Left panels (a), (c), and (e) show the raw precipitation[17], temperature[15; 16] and our measure of agricultural suitability for the year 1775, where we
register the highest overall mean of agricultural suitability over Europe (0.55). Right panels (b), (d), and (f) show the z-score value of panels (a), (c), and
(d), respectively. Z-score values for each grid i have been computed using the standard formula: Z-scorex,i,t = (xi,t −µx,i)/σx,i where µxi,i and σx,i are the
mean and standard deviation of variable x in grid i over the 1500-2000AD period respectively. xi,t is either yearly mean temperature, precipitation, or mean
agricultural suitability for grid i at time t. The different values have been computed using a grid of a 0.5◦x 0.5◦resolution covering the European landscape,
specifically ranging from 25◦W to 40◦E and 35◦N to 70◦N.
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Figure 8. Correlation between suitability indices

Note: The left panel shows the correlation between the suitability index built in this study (Suit) with data averaged over the period 1971 - 2000, and a
suitability index from FAO. The Suitability index (FAO) is constructing using an average of four main type of crop suitability in Europe (Wheat, Oat, Rye
and Barley) from the FAO GAEZ v4 dataset with following attributes; all land in grid cell for the time period 1971-2000 under rainfed conditions and low
input level and without CO2 fertilization using climate data source CRUTS32. The index has been normalized to a 0 - 1 measure. The right panel shows the
correlation between the suitability index built in this study (Suit) with data averaged over the period 1961 - 1990 and the suitability index from [3] that uses
climate data averaged over the period 1961 - 1990. The red dashed line represents the 45

◦
line and the solid red line represent the linear model y = βx. The

coefficient and R2 from the linear regression are shown in the top left corner. All the different variables have been extracted calculating the mean value for each
variables within a 0.5◦x 0.5◦grid resolution covering the European landscape, specifically ranging from 25◦W to 40◦E and 35◦N to 70◦N to ensure a uniform
spatial coverage.

Figure 9. Spatial difference between suitability indices

(a) FAO (b) Ramankutty et al. (2002)

Note: The figure shows the spatial difference between our index and the two benchmark indices. Difference = Suiti −Xi, where Suiti represents our measure
of agricultural suitability and Xi denotes either the composite measure of agricultural suitability defined by the FAO GAEZ (panel a) or the measure of
agricultural suitability by [3] (panel b) for grid i. Consequently, negative values indicate areas identified as more suitable by the other dataset, while positive
values imply that our measure indicates grids with higher suitability conditions for cultivation. The Suitability index (FAO) is constructing using an average of
four main type of crop suitability in Europe (Wheat, Oat, Rye and Barley) from the FAO GAEZ v4 dataset with following attributes; all land in grid cell for the
time period 1971-2000 under rainfed conditions and low input level and without CO2 fertilization using climate data source CRUTS32. The index has been
normalized to a 0 - 1 measure. The suitability index from [3] (panel b) uses climate data averaged over the period 1961 - 1990. All the different variables have
been extracted calculating the mean value for each variables within a 0.5◦x 0.5◦grid resolution covering the European landscape, specifically ranging from
25◦W to 40◦E and 35◦N to 70◦N to ensure a uniform spatial coverage.
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Figure 10. Distribution of differences

Note: The histogram shows the distribution of difference of the 9100 grids as shown in figure 9. Count represent the total number of grid with values that
fits within each bins. Difference = Suiti −Xi, where Suiti represents our measure of agricultural suitability and Xi denotes either the composite measure of
agricultural suitability defined by the FAO GAEZ (FAO) or the measure of agricultural suitability by [3] (Ramankutty et al. (2002)) for grid i. Consequently,
negative values indicate areas identified as more suitable by the other dataset, while positive values imply that our measure indicates grids with higher suitability
conditions for cultivation.The Suitability index (FAO) is constructing using an average of four main type of crop suitability in Europe (Wheat, Oat, Rye and
Barley) from the FAO GAEZ v4 dataset with following attributes; all land in grid cell for the time period 1971-2000 under rainfed conditions and low input
level and without CO2 fertilization using climate data source CRUTS32. The index has been normalized to a 0 - 1 measure. The suitability index from [3]
(panel b) uses climate data averaged over the period 1961 - 1990. All the different variables have been extracted calculating the mean value for each variables
within a 0.5◦x 0.5◦grid resolution covering the European landscape, specifically ranging from 25◦W to 40◦E and 35◦N to 70◦N to ensure a uniform spatial
coverage.
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